Польза и вред молочнокислых бактерий (2). Что такое пробиотики

Молоко и источники его загрязнения. Молоко - секрет молочной железы млекопитающих. Состав коровьего молока следующий, %: вода - 87,5; молочный сахар - 4,7; молочный жир - 3,8; белки - 3,3; минеральные вещества- 0,7, а также витамины и ферменты. Академик И. П. Павлов писал: «Молоко - это изумительная пища, приготовленная самой природой». Установлено, что этот продукт содержит более ста ценнейших компонентов. В состав молока входят все необходимые для жизнедеятельности организма вещества: белки, жиры, углеводы, минеральные

соли, витамины.

Происхождение микрофлоры молока. Источники загрязнения. Молоко является хорошей средой для размножения исохранения микроорганизмов. Получить стерильное молоко невозможно, так как в сосковом канале (сообщающимся с внешней средой) всегда находятся представители нормальной микрофлоры вымени: маммококки, микрококки, молочнокислыестрептококки и палочки.На протяжении всего пути, от вымени до потребителя, молоко соприкасается с целым рядом источников загрязнения.Они далеко не равноценны как по обилию, так и по видовомусоставу бактерий.

Микрофлора , передаваемая молоку из вымени . Этот источник поставлен на первое место в силу его постоянства и абсолютной неизбежности. В сосковом канале всегда содержатся следующие виды бактерий: облигатные - микрококки, маммококки (кокки вымени безвредны) и факультативные - молочнокислые стрептококки, могут быть и патогенные стафилококки. Они образуют «бактериальную пробку» соскового канала, поэтому перед доением необходимо удалить ее с первыми струйками молока, которые сдаивают в отдельный сосуд и обеззараживают. Если этого не делать, то количество бактерий в общем удое будет больше на 5%.

На бактериальное загрязнение молока при доении большое влияние также оказывает и санитарное состояние животных (кожа коров), молочного оборудования и посуды; степень чистоты рук доярок, подстилок животных.

Кожа животного , как источник загрязнения, содержит большое количество микроорганизмов, попадающих на нее с частицами навоза, которые весьма трудно удалить полностью. Во время дойки со шкуры животного на поверхность молока падает настоящий дождь из кишечных палочек, энтерококков, аэробов и анаэробов, дрожжей и плесневых грибов и др. (перечень этих микроорганизмов очень важен, так как именно они

будут составлять нормальную микрофлору молока). Следовательно, степень бактериального загрязнения молока зависит от способа обработки кожи и вымени перед доением. Однако на практике, часто для обмывания и подсушки вымени, используют одно ведро и одно полотенце для всей группы, поэтому на 1 см2 такого полотенца может быть обнаружено до 214 млн бактерий.


При машинном доении коров могут быть исключены многие источники загрязнения, если содержать доильные аппараты в санитарном состоянии, соответствующем определенным нормам. Если данные нормы будут нарушены, то доильные аппараты станут значительным источником микробного загрязнения молока (в основном психрофильных бактерий). Например, после дезинфекции 0,2%_ным раствором хлорамина новые молочные шланги становятся почти стерильными; в отличие от них, в старых шлангах, имеющих на внутренней поверхности трещины, после такой же обработки обнаруживалось на 1 см2 до 940 тыс. бактерий. Таким образом, если молочную аппаратуру содержать в хорошем санитарном состоянии, то она будет наиболее совершенной защитой от загрязнения, в противном случае загрязненная аппаратура будет отдавать молоку собственную микрофлору.

Применение в качестве подстилки прелой соломы увеличивает число микроорганизмов, особенно спорообразующих и плесневых грибов в воздухе, поэтому вместе с пылью в молоко попадают и микробы. Рекомендуется в качестве подстилки использовать свежую солому, опилки или торф, которые хорошо поглощают влагу, газы и в некоторой степени препятствуют развитию гнилостных и патогенных микроорганизмов.

Таким образом многие источники загрязнения могут быть устранены при соблюдении зоогигиенических правил содержания коров и санитарногигиенических условий в процессе получения молока.

Для того чтобы получить полное представление о составе микрофлоры свежего молока, необходимо ознакомиться с источниками его загрязнения.

Изменение микрофлоры молока при хранении и транспортировке. Количественные и качественные изменения микрофлоры молока зависят от температуры, продолжительности хранения и состава ее при получении. Так, при хранении молока при

10_С происходит последовательная смена следующих фаз: бактерицидной, смешанной микрофлоры, молочнокислой и фазы развития дрожжей и плесени.

Бактерицидная фаза заключается в стабилизировании, а зачастую и в уменьшении количества микроорганизмов в свежевыдоенном молоке в процессе хранения. Этим объясняется наличие в молоке различных противомикробных веществ: лактенинов, бактериолизинов, лизоцима и др. Продолжительность бактерицидной фазы изменяется в широких пределах и зависит от следующих факторов:

1) количества бактерий, попавших в молоко во время дойки;

2) температуры хранения и скорости охлаждения (бактерицидные свойства молока сохраняются 48 ч при температуре 0 С, 24 ч- при температуре +10_С и только 6 ч- при температуре +25 С);

3) индивидуальных свойств организма коровы и периода ее лактации.

Фаза смешанной микрофлоры . После окончания бактерицидной фазы, когда в молоке уже нет веществ, задерживающих развитие микробов, а температура хранения выше +10 С, в молоке начинают размножаться все оставшиеся к этому моменту микроорганизмы. В течение данной фазы, длительность которой 12–18 ч, микрофлора молока возрастает в сотни тысячраз. С практической точки зрения фаза смешанной микрофлоры особенно важна, так как именно в этот период молоко попадает к потребителю.

Молочнокислая фаза . Ее началом является момент, когда в молоке обнаруживается заметное нарастание кислотности. С определенного времени перевес над всеми имеет Str . lactis , по мере их размножения кислотность молока становится рН 4,0, которая является неблагоприятной для стрептококков, поэтому на смену им начинают развиваться кислотоустойчивые молочнокислые палочки. Повышение кислотности оказывается губительным для гнилостной микрофлоры, а также для бактерий группы кишечной палочки. Таким образом молочнокислая фаза состоит из двух периодов, сменяющих друг друга в определенной последовательности.

Продолжительность молочнокислой фазы больше, чем какой-либо другой, и может продолжаться месяцами без заметного изменения в микрофлоре при соответствующей температуре. Но надо учитывать, что в целом молочнокислая фаза охватывает собой то состояние молока, в котором оно квалифицируется как кисломолочный продукт.

Фаза развития дрожжей и плесени . Эта фаза не представляет практического интереса и вряд ли придется наблюдать ее в практических условиях (она представлена для полноты картины). Обычно молоко не доживает до этой фазы, будучи потребленным в течение молочнокислой фазы. Внешняя картина ее развития следующая: еще во время молочнокислой фазы на поверхности сгустка образуются отдельные колонии Oidium

lactis , постепенно смыкающиеся в сплошную белую пушистую пленку. В это же время можно наблюдать появление пленчатых дрожжей, позднее появляются пигментированные колонии плесневых грибов Penicillium , Aspergillus , вытесняющие Oidium . Молоко начинает прогоркать за счет разлагающегося жира, появляются плесневый и дрожжевой привкусы. Затем под плесневой пленкой становятся заметны первые признаки разложения и пептонизации белков в виде жидкости от светло желтого до темно-бурого цвета. Данный слой увеличивается за счет сгустка и, в конечном итоге, все превращается в бурую жидкость, закрытую сверху толстой пленкой плесени.

Пороки молока микробного происхождения. При длительном хранении сырого и пастеризованного молока в нем начинают проявляться признаки порчи, вызванные размножением попавшей микрофлоры. Характер порчи зависит от температуры хранения и вида преобладающих микроорганизмов (в сыром и пастеризованном молоке они разные).

Аммонификаторы (гнилостные микроорганизмы) могут размножаться при низкой температуре хранения молока, так как относятся к психрофильным бактериям. В процессе разложения белков изменяется консистенция молока, появляется горечь.

Споры маслянокислых бактерий при пастеризации не погибают, а при длительном хранении такого молока они расщепляют лактозу до масляной кислоты и газа, придающих молоку прогорклый вкус и неприятный запах.

Плесневые грибы образуют островки колоний на поверхности свернувшегося молока, придают ему горький вкус и плесневый запах. Наличие плесени свидетельствует о длительном хранении молочного продукта при низкой температуре.

Кишечная палочка , находящаяся в сыром молоке в больших количествах, придает ему стойловый запах, а при благоприятной температуре сбраживает лактозу с образованием кислоты и газа. Молоко, содержащее кишечную палочку, нельзя использовать для приготовления кисломолочных продуктов сыров, так как E . coli вызывает в них пороки.

Возбудители инфекционных болезней, передаваемых через молоко. Возбудители инфекционных болезней попадают вмолоко от больных животных, а также из окружающей средыво время транспортировки или переработки. Их можно разделить на две группы.

В первую входят возбудители зооантропонозов , которые передаются от одного вида животного к другому и от животного к человеку. К ним относятся возбудители туберкулеза и бруцеллеза (см. вклейку, ил. V), сибирской язвы,ящура и др. Во вторую группу входят возбудители антропонозов - болезней, которые передаются от человека к человеку(дизентерия, дифтерия, брюшной тиф).При попадании патогенных возбудителей от больных людей и животных в молоко в нем происходит размножение микробов и накопление токсинов, которые приводят к возникновению пищевых токсикоинфекций при употреблении данного зараженного продукта.

Дезинфекцию на молочных фермах следует рассматривать как важную меру, дополняющую пастеризацию молока и направленную на предупреждение зоонозов и зооантропонозов, которые передаются человеку через молоко. Доильные аппараты, ведра, бидоны и другие емкости следует дезинфицировать, для этого необходимо применять различные химические средства, например, кальцинированную соду и гидрооксид калия.

Сохранение молока физическими методами. Молоко, поступающее на молочные заводы, содержит большое количество бактерий (от сотен тысяч до миллионов в 1 мл), особенно в жаркое время года. Бактериальное загрязнение может быть снижено, если на всем пути молока от коровы до потребителя будут соблюдаться санитарно-гигиенические нормы и оно будет своевременно охлаждаться. Особенно эффективно действует глубокое охлаждение непосредственно после удоя, так как этим удлиняется бактерицидная фаза, поэтому хранить молоко на ферме следует при температуре не выше +4_С.

Замораживание молока несколько ограничено и проводится только в определенных географических зонах. Холод не вызывает гибель микроорганизмов, а переводит их в анабиотическое состояние, поэтому при оттаивании молока их жизнедеятельность начинается вновь. Следовательно, с помощью холода можно сохранить только бактериально чистое молоко.

Кипячение молока хотя и обеспечивает высокий стерилизующий эффект, но не может быть рекомендовано для молочной промышленности. Это связано с тем, что в течение данного процесса происходит разрушение витаминов, белки денатурируются, ценный кальций оседает на стенки посуды, нарушается гомогенность жировой эмульсии. Поэтому вместо кипячения в молочной промышленности применяют пастеризацию молока, после которой сохраняется биологическая ценность продукта.

Существует несколько режимов пастеризации молока от здоровых животных:

а) длительная - при температуре +65 С в течение 30 мин;

б) кратковременная - при температуре +74...+78 С в течение 15–20 с;

в) моментальная- при температуре +85...+90 С без выдержки.

При правильно проведенной пастеризации погибает около 99% бактерий, содержащихся в молоке, в том числе бесспоровые патогенные виды (возбудители туберкулеза и бруцеллеза (см. вклейку, ил. V), сальмонеллеза, гноеродные кокки), кишечная палочка и молочнокислые бактерии. После пастеризации молоко необходимо охладить до температуры +4_С, чтобы предотвратить прорастание спор и размножение сохранившейся термофильной микрофлоры.

Хранение пастеризованного молока при комнатной температуре дает возможность беспрепятственного размножения гнилостных и патогенных бактерий, если они остались в нем, так как бактерицидные свойства в пастеризованном молоке под действием высокой температуры инактивированы. Такое молоко не скисает, но может подвергнуться гнилостному разложению (пептонизации) и стать ядовитым при длительном хранении в

холодильнике.

Стерилизация молока предусматривает полное уничтожение вегетативных и споровых форм бактерий, что позволяет хранить молоко в течение длительного срока. В настоящее время применяется ультравысокотемпературная обработка (УВТ) молока в трубчатых аппаратах в условиях закрытого автоматизированного процесса, суть которой заключается во введении химически чистого пара непосредственно в молоко и нагревании его до температуры +140_С в течение 1 с. Этим устраняются окислительные процессы, приводящие к разрушению витамина С, уничтожаются летучие вещества кормового и стойлового происхождения. В результате данной обработки также погибают споры бактерий, а все полезные вещества и микроэлементы в молоке сохраняются. При изготовлении такого молока используется только высококачественное сырье, так как молоко I и II сорта (по ГОСТу) просто-напросто свернется. Специально для УВТ молока была изобретена новая, асептическая разновидность картонной упаковки с полиэтиленовым покрытием, в которой молоко может сохраняться и при комнатной температуре.

При консервировании происходит уничтожение микробов, вызывающих порчу продуктов, или же создаются неблагоприятные условия для их жизнедеятельности. Для приготовления консервированного сгущенного молока в банках его стерилизуют при температуре +115...+118_С в течение 15 мин. При такой температуре погибают вегетативные микробы, но часть спорообразующих может остаться. Сохранившиеся споры в благоприятных условиях могут прорасти и начать разлагать продукт с образованием газов, которые вызывают бомбаж консервных банок. Для проверки качества стерилизации банки выдерживают в течение 10 суток при температуре +37_С. Отсутствие бомбажа указывает на качественную стерилизацию банок, что в свою очередь позволяет хранить данный продукт длительное время при комнатной температуре.

Сгущенное молоко с сахаром . Для начала сырое молоко подвергают очистке и приводят содержание жира и сухих веществ к уровню, соответствующему требованиям ГОСТа. Затем молоко доводят до момента закипания и выдерживают в таком состоянии около 20 мин, в течение данного времени практически все микроорганизмы погибают, за исключением устойчивых к высокой температуре. Пастеризованное молоко сгущают до 1/3 первоначального объема, при этом в нем должно содержаться не более 26,5% влаги, после чего в него добавляют 43,5% сахара. При таком соотношении воды и сахара создается высокое осмотическое давление - неблагоприятное условие для развития эшерихий, молочнокислых бактерий, дрожжей и многих плесневых грибов. Но при наличии шоколадно-коричневой плесени и цветных микрококков, обладающих протеолитическими свойствами, происходит порча продукта. В этом случае срок его хранения не превышает 6–12 месяцев. Соблюдение технологии и санитарных условий в процессе производства позволяет увеличить время хранения сгущенного молока с сахаром

Санитарно _микробиологическая характеристика молока.

Для предотвращения распространения инфекционных болезней через молоко необходимо проводить строгий ветеринарный и санитарный надзор за животными и предприятиями молочной промышленности (контроль сырья и процессов производства). Молоко, поступающее на молочный завод от производителя, в зависимости от санитарно-микробиологических и физико-химических показателей делят на три сорта (высший, I и II). При приеме молока выявляют его кислотность, механическую загрязненность, микробную обсемененность по редуктазной пробе и наличие соматических клеток, а один раз в декаду определяют наличие ингибиторов, фальсифицирующих сорт молока (показатели, по которым определяют сорт молока, находятся в лабораторных занятиях в теме 7). Молоко высшего и I сорта должно иметь кислотность 16–18_Т (по Тернеру), микробную обсемененность по редуктазной пробе не ниже I класса и степень чистоты 1_й группы по эталону. Кислотность молока II сорта может быть в пределах 16–20_Т, микробная обсемененность по редуктазной пробе - не ниже II класса и степень чистоты по эталону - не ниже 2_й группы. К несортовому молоку относят молоко с кислотностью менее 16 и более 21 Т по Тернеру.

При этом оценка сорта молока при приемке осуществляется по худшему показателю.

Кроме перечисленных показателей, на молокозаводе в сдаваемом молоке определяют наличие соматических клеток, повышенное содержание которых свидетельствует о наличии острого воспаления вымени (мастит). Использование такого молока на пищевые цели не допускается, так как, кроме потери технологических свойств, оно содержит опасные токсины. Кислотность молока является показателем, косвенно подтверждающим его микробное благополучие. При увеличении количества бактерий повышается и кислотность молока. Если она ниже нормы, то это свидетельствует о добавлении к нему химических веществ с целью фальсификации качества молока. Так как все вещества, применяемые для фальсификации, токсичны, то это не только незаконно, но и весьма опасно для жизни человека.

При обнаружении в молоке ингибирующих веществ его относят к несортовому, даже если по остальным показателям оно отвечает высоким требованиям. Прием следующей партии молока, поступившей из этого хозяйства, осуществляют только после получения результатов анализа, подтверждающего отсутствие ингибирующих веществ.

При получении неудовлетворительных результатов анализов хотя бы по одному из показателей проводят повторный анализ удвоенного объема пробы, взятой из той же партии молока. Результаты повторного анализа являются окончательными и распространяются на всю партию продукта. Антибиотики, попадающие в молоко при лечении коров, подавляют жизнедеятельность молочнокислых бактерий, очень чувствительных к ним, и тем самым нарушают технологический процесс изготовления кисломолочных продуктов. Поэтому один раз в декаду молоко, поступающее из хозяйств, должно быть проверено на наличие антибиотиков и других ингибиторов (перекиси водорода, соды и т. д.).

На качество молока оказывают влияние также радиоактивные вещества, гербициды, фунгициды, пестициды и другие ксенобиотики. Молоко с остаточными количествами химических веществ защиты растений и животных, а также антибиотиков подлежит выбраковке.

Реферат

Молочнокислые стрептококки


1. Общие понятия о молочнокислых бактериях

Молочнокислые бактерии, микробы, вызывающие в молоке (молочных продуктах) молочнокислое брожение, выражающееся в сбраживании молочного сахара в молочную кислоту; вследствие образования кислоты происходит свертывание молока. К Молочнокислым бактериям относятся палочки и кокки. Первые принадлежат к ацидофильным бацилам и обладают их свойствами; по классификации Лемана и Неймана палочки вместе с другими ацидофильными бацилами образуют группу «Plocamobacteria», а по Гейму и Шлирфу (Heim, Schlirf) - группу ацидобактерий. По американской классификации (Bergey) все Молочнокислые бацилы образуют особый вид-Lactobacil-laceae. Важнейшими представителями группы являются Вас. bul-garicus, Вас. caucasicus и другие. Мечниковым Вас. bulgaricus предложен для замещения «дикой» флоры кишечника у человека; Bact. mazun, 2,7-21 м в длину и 1 - 1,1 м в ширину, неподвижная, Грам-положительная палочка; не растет на обыкновенных питательных средах; на агаре с молочной сывороткой образует колонии с неровным краем и волосовидными отпрысками в окружающую среду. Содержится в мацуне, молочном продукте, изготовляемом в Армении. Повидимому идентична с LactobaC. caucasicus.-L actobac. lactis acidi Leichmann. Кроме перчисленных к молочнокислым бактериям относятся Lactobacillus Boas-Op р 1 е г i, встречающийся в желудочном содержимом, главным образом при раке желудка; Lactobacillus helvetieus (син. Вас. caseiFreudenreich"a), выделенный из кислого молока и сыров; Lactobacillus bu-sae asiaticus (Bact. busae asiaticae Tschekan), выделенный из бузы, и друг. - Микробом, всего чаще вызывающим скисание молока на холоду, является Streptococcus acidi lactici (Grotenfeldt) или по американской классификации-Streptococcus lacticus (Lister) Lonis. Для получения наилучшего роста всех видов молочнокислых микробов Омелянский рекомендует агар Коанди (Kohendy): 1 л молока кипятят 5 минут, добавляют 1,5 см3 соляной кислоты и фильтруют через холст. Полученную сыворотку слегка подщелачивают и на 1 л прибавляют 300 смг воды, 3 г желатины, 15 г. пептона и 20 гагара. Смесь прогревают в автоклаве, фильтруют и стерилизуют. Молочнокислые бактерии имеют большое значение в молочном хозяйстве, так как они участвуют в образовании различных молочнокислых продуктов (простокваша, лактобацилии, сметана, творог, сыры, кефир, кумыс, и др.).

В природе молочнокислые бактерии встречаются на поверхности растений (например, на листьях, фруктах, овощах, зёрнах), в молоке, наружных и внутренних эпителиальных покровах человека, животных, птиц, рыб (например, в кишечнике, влагалище, на коже, во рту, носу и глазах). Таким образом, помимо своей роли в производстве пищи и кормов, молочнокислые бактерии играют важную роль в живой природе, сельском хозяйстве и нормальной жизнедеятельности человека. Влияние ускоренной индустриализации производства молочнокислых бактерий, основанной на небольшом числе адаптированных для заводов штаммов, но природное разнообразие этих бактерий и здоровье человека пока остаётся не изученным.

Наши знания в микробиологии, генетике и биологии плазмид молочнокислых бактерий быстро идет вперед. Исследования распутывают молекулярные механизмы передачи генов, контроля и экспрессии.

Lactococcus lactis и Lactococcus cremoris прежде всего молочнокислые бактерии рода Streptococcus . Эти организмы развиваются естественно в молоке и были среди первых родов молочнокислых бактерий, изученными микробиологами. Они способны обладать N антигенной структурой в клеточной стенке.

Их роль в молочнокислом брожении и полезность как культуры стартера возобновила интерес в микробиологии и генетике, особенно с новейшей разработкой переноса гена и систем клонирования. Эти открытия дают возможность направлять генетические усовершенствования существующих культур стартера, используемых в молочной промышленности. Этот подход комплектует классические программы усовершенствования культур для того, чтобы увеличить невосприимчивость к бактериофагу, установить надежность и активность культуры при устранении нежелательных свойств. Использование микроорганизмов продовольственных сортов как основных бактерий для создания генетически проектируемых белков обеспечивает дополнительный стимул для более детального генетического анализа.


2. Классификация


Бактерии молочнокислые, группа микроорганизмов, сбраживающих углеводы с образованием главным образом молочной кислоты.

Классификация молочнокислых бактерий разработана недостаточно. Признаки бактерий могут значительно варьировать, что создает трудности при их классификации. В зависимости от характера образующихся продуктов при сбраживании гексоз бактерии молочнокислые делятся на гомоферментативные и гетероферментативные. Гомоферментативные бактерии при брожении сахаров образуют в основном молочную кислоту и незначительные количества фумаровой и янтарной, летучих кислот, этилового спирта и диоксида углерода; гетероферментативные - наряду с молочной кислотой образуют значительно большие количества уксусной кислоты, этилового спирта, углекислого газа и др. продуктов, используя на это 50% сахаров. Наиболее часто при классификации принимают во внимание форму клеток при условии, что культуры изучаются в определенном возрасте и среде. В основе деления на виды лежат также признаки сбраживания углеводов, потребности в источниках питания, учитывается оптическое вращение молочной кислоты. Первую научную классификацию молочнокислых бактерий разработал голландский ученый Орла-Иенсен в 1919. Бактерии молочнокислые объединены в семейство Lactobacillaceae, которое делится на подсемейство Lactobacilleae (род Lactobacillus) и Streptococceae (роды Streptococcus, Pediococcus, Leuconostoc). В виноделии широко распространены бактерии молочнокислые, относящиеся к 3 родам: Lactobacillus, Pediococcus, Leuconostoc.

Молочнокислые бактерии, попадая в желудок и кишечник, становятся составной частью микрофлоры слизистой. Особенно это касается бифидобактерий. Одни бактерии производят ферменты, которые расщепляют белки на простые соединения, способствуя лучшему усвоению пищи. Другие вырабатывают антибиотики, что придает кисломолочному продукту лечебно-профилактические свойства.
Бактериальные культуры бывают термофильные (теплолюбивые) и мезофильные (холодолюбивые). Термофильные бактерии более активны, чем мезофильные. Названия молочнокислых продуктов, содержащих живые бактерии, обычно имеют приставки «био-», «ацидо-», «бифидо-», «лакто-». Разные бактерии оказывают различное влияние на организм. Недавние таксономические исследования пересмотрели разновидности в пределах рода Streptococcus и ввели изменения, затрагивающие мезофильные молочные культуры стартера. Из-за общих черт между S. lactis и S.cremoris , 9-ый выпуск Руководства Берги Систематической Бактериологии (том 2) сгруппировал S. lactis , S. diacetylactis , и S. cremoris в одну разновидность (род): S. lactis . Гарви и Ферроу предложили обозначить подразновидности S. lactis, S. diacetylactis, и S. lactis cremoris.

Однако, в 1985 Шлейфер и др. предложили, чтобы молочные стрептококки были классифицированы в пределах нового рода, Lactococcus , основанного на исследованиях гибридизации нуклеиновой кислоты, в иммунологическом отношении супероксиддисмутазы, липотейхоевых кислотных структур, образцов липида, жирной кислоты и менохинонного состава. Род Lactococcus был одобрен Международным Союзом Микробиологических Обществ в 1986. Теперь по новой номенклатуре S. Lactis , S. Diacetylactis, S. cremoris обозначается как Lactococcus lactis , Lactococcus lactis diacetylactis и Lactococcus lactis cremoris.

Сендин предложил, чтобы один из родов Lactococcus lactis , который использует цитрат для того чтобы получить диацетил, был назван Lactococcus lactis diacetylous . Так как молочнокислые лактобактерии так широко используемы в молочной промышленности, предложенная терминология является весьма выгодной.


. Морфология


По форме клеток бактерии молочнокислые делятся на кокковые и палочковидные. Диаметр кокковых форм от 0,5-0,6 до 1 мкм; они располагаются единично, парами или в виде цепочек различной длины. Палочковидные бактерии разнообразны по форме - от коротких коккообразных до длинных нитевидных различной длины (от 0,7-1,1 до 3,0 - 8,0 мкм), расположенных единично или цепочками (см. рис). На форму клеток значительно влияет состав среды и условия культивирования. Образование удлиненных палочковидных клеток наблюдается при развитии в средах, содержащих этиловый спирт, с высокой активной кислотностью, в средах с недостатком витамина В12 под действием ионизирующих излучений. Бактерии молочнокислые, встречающиеся в виноделии, в основном неподвижны, не образуют спор, пигмента, положительно окрашиваются по Граму, не восстанавливают нитраты в нитриты, характеризуются неактивной каталазой. Клеточные стенки представлют собой гомогенный электронно-плотный слой толщиной 15-60 мкм. Цитоплазматическая мембрана может быть двух- или трехслойной толщиной 75-85 А. В цитоплазме клеток бактерий молочнокислых обнаружены рибосомы диаметром около 150 А, область ядерного материала(нуклеоид), который состоит из тонких плотных нитей шириной 20-25 А, отождествляемых с дезоксирибонуклеиновой кислотой.


4. Особенности генома молочнокислых бактерий, их историческая перспектива


Наблюдения бактериологов, начатые с 1930-ых годов, были основой текущих событий в микробиологии и генетике молочнокислых бактерий.

При изолировании некоторых штаммов L. Lactis были отмечены неустойчивость и необратимая потеря свойства расщеплять лактозу (Lac), а также свойства протеиназной (Про) активности.

Позже, в 1950-ых годах, Kнетмен и Сворфлинг описали неустойчивость к использованию цитрата. Механизмы необратимой потери этих важных молочнокислых свойств были, в то время, неизвестны и ждали будущего разъяснения.

Об Исследовании, в котором описывались первые системы переноса гена, сообщали ещё в 1962. Мойлер-Мэдсен и Дженсон преобразовали (трансформировали) L. lactis к способности использовать цитрат и производить аромат солода, тогда как Сендин и др. использовали вирулентные бактериофаги, чтобы получить устойчивость стрептомицина к L. lactis C2 а также независимость триптофана от L. lactis 18-16. Это нужно было для того, чтобы генетический обмен играл существенную роль в изменении культуры стартера, однако необратимую потерю метаболических свойств не могли объяснить ещё 10 лет.

Ведущие генетические исследования были начаты вначале 1970-ых Маккеем и сотрудниками Университета Миннесоты. После наблюдений Mаккея и др., что лактобактерии были легко утеряны после того, как их клетки были обработаны акрифлавином, широко используемым мутагеном и плазмид-лечащим веществом, в 1972 выдвинули гипотезу, что неустойчивые соединения были закодированы плазмидами ДНК.В 1974 году было зарегистрировано присутствие плазмид в лактобактериях, что и дало начало новой эре исследования этих организмов.

Последующие исследования ясно установили распространенность и важность плазмид лактобактерий в молочнокислом брожении. Теперь известно, что плазмиды кодируют множество свойств, включая расщепление углеводов (лактозу, галактозу, глюкозу, сахарозу, маннозу и ксилозу); протеиназной активности; использование цитрата; системы ограничения и модификации, адсорбции фага, сопротивление к фаговой инфекции и другие защитные механизмы против бактериофагов; резистентность к ультрафиолетовому излучению; действие антигенов клеточных стенок; продукция низина и его устойчивость; продукция бактериоцина и устойчивость; продукция диплококков и иммунитет против них; а также вязкость.

Усовершенствованные методы анализа плазмид продвинули также исследование плазмид лактобактерий. Ранее при исследовании плазмид использовали электронную микроскопию, отнимающую много времени и утомительной техникой, чтобы охарактеризовать массу и число плазмид в специфическом состоянии. В 1978 Клейнхеймер и др. разработали быстрый способ для вырезания плазмид молочнокислых бактерий и использовали электрофорез в агаризованном геле для визуализации плазмид, таким образом, способствуя тем самым их быстрому и удобному анализу. В последние годы появилось немало других процедур выделения плазмид (особенно крупных), распространенных в лактобактериях, которые сделали анализ гораздо проще.

В конце 1970-ых и вначале 1980-ых были разработаны и уже эксплуатировались системы переноса генов, в то время как микробиологические, физиологические и технологические исследования этих организмов ещё продолжались.

Трансдукция играла важную роль в ранних генетических исследованиях и может иметь большое значение в изучении хромосомных генов. Трансдукция плазмид-кодированных лактобактерий с помощью умеренных бактериофагов от L. lactis была первоначально описана Маккеем и др. в 1973. Во время трансдукции плазмид-кодированных лактобактерий или протеиназного действия, происходят сокращения Lac/Prt плазмиды, наблюдаемые в плазмидах. Причины, приводящие к трансдуцирующему сокращению у Lac/Prt плазмид L. lactis , были определены Гэссоном. Обширные ограничения и анализ исключения показали, что трансдуцирующее сокращение Lac/Prt плазмид были вызваны определенными случаями удаления.

В 1979 Гессон и Девис, а также Kемплетон и Mаккей сообщили о процессе конъюгации лактобактерий. Вскоре высокочастотные конъюгационные системы передачи у L. Lactis 712 и L. lactis ML3, связанные с уникальным комплексированием клетки, наблюдались Крейсоном, Уолтом и Mаккеем. Во время коньюгационной передачи плазмид лактобактерий, наблюдались слияние репликонов и образование субъединиц. В 1984 Андерсен и Mаккей установили, что субъединицы были сформированы от слияния двух плазмид, и что они чаще подвергаются к более высокой частоте слияния во вторичной конъюгации. Предполагали, что есть посредник при слиянии.Кроме того, обратимая область была ответственна за экспрессию (выражение) генов, управляющих скоплением клеток.

В 1987, Ползин и Симидзу-Kадота выделили и охарактеризовали вставки последовательностей, участвующих в конъюгативном формировании ML3. Плазмида лактотобактерии в ML3 содержала две копии вставок последовательности, 1SS1S, которые были подобны последовательностям 1S26 грамотрицательных бактерий. У L. lactis 712, хромосомально определили расположение полового фактора, которые вместо плазмид были ответственны за высокочастотный коньюгационный перенос у лактобактерий.

В 1980 Гейссон разрабатывал методы для формирования и восстановления протопластов, а также использования протопластов для того, чтобы успешно перекомбинировать и передавать гены путем слияния протопластов. После этого в 1982 Гeйс, Koндo и Маккей успешно использовали протопласты для полиэтилен-индуцированной трансфекции и соответственно трансдукции. В 1986 году была проведена электропорация всех клеток, а также в 1887 году Сандерсом и Никлсоном описано полиэтилен гликоль-инддуцированная трансформация всех клеток. Трансформация и развитие эффективных методов электропорации были пересмотрены позже.

Разработка эффективных систем передачи генов, особенно коньюгации и трансформации, распространения плазмид среди лактобактерий обеспечило генетическое свидетельство о редактировании различных фенотипических свойств к дискретным плазмидам. Передача желательных генов хозяевам, испытывающим недостаток в них, также проявляет к себе коммерческим интерес.

Трансформация также сыграла ключевую роль в развитии методологии клонирования генов и молекулярных исследований экспрессии генов. Применялись две стратегии клонирования: клонирование непосредственно в лактобактериях и с помощью векторов шатла для клонирования гетерогенных хозяев таких как, Sanguis Streptococcus , Bacillus subtilis и Escherichia сoli .

Молекулярные исследования проводили с помощью генетических инструментов, которые теперь стали доступными. Де Вос, ван дер Воссен и др. установили, что организация последовательности рибосомных участков, промотор, а также терминационные последовательности некоторых генов лактобактерий подобны другим грамположительным бактериям. Кроме того, Кок и др. установили, что сигнал последовательности протеиназ L. cremoris Wg2 были подобны протеазам серина семейства subtilisin .

и 1980 гг. были связаны с развитием и назреванием этапов генетики лактобактерий. Применение генетических инструментальных средств разъяснило много интересных аспектов об этих организмах.


5. Размножение


Бактерии молочнокислые размножаются путем деления клеток, иногда перешнуровывания. Описан процесс размножения некоторых бактерий молочнокислых с помощью гонидий, при котором на концах палочек образуются зернышки (гонидии), увеличивающиеся в размерах, вытягивающиеся и превращающиеся в палочки, а также образование у бактерий молочнокислых фильтрующихся форм. Японскими исследователями доказано наличие у бактерий молочнокислых процесса спорообразования.


. Рост и развитие


На рост и развитие бактерий молочнокислых влияют различные факторы.

Углеродное питание . Наиболее важными источниками энергии для бактерий молочнокислых являются моно и дисахариды (глюкоза, лактоза, сахароза, мальтоза), а также органических кислоты (лимонная, яблочная, пировиноградная, фумаровая, уксусная и муравьиная) в концентрации 30 - 50 мкг/мл. Из жирных кислот рост бактерий молочнокислых стимулируют олеиновая, линолевая, а также линоленовая. При отсутствии сбраживаемых углеродсодержащих субстратов бактерий молочнокислых могут использовать аминокислоты в качестве источника энергии. Некоторые штаммы сбраживают полисахариды.

Азотное питание . Значительное число бактерий молочнокислых не способно синтезировать органических формы азота и поэтому нуждаются для своего роста в присутствии их в среде; только некоторые из бактерий молочнокислых используют минеральные соединения азота для синтеза ряда органических соединений. Для удовлетворительного роста бактерий молочнокислых необходим ряд аминокислот: аргинин, цистеин, глутаминовая кислота, лейцин, фенилаланин, триптофан, тирозин, валин.

Витамины . Все виды палочковидных бактерий нуждаются в пантотеновой кислоте, биотине, никотиновой кислоте, а гетероферментативные - еще и в тиамине. Потребности в пуриновых основаниях и тиамине связаны с потребностями в аминобензойной или фолиевой кислотах.

Неорганические соединения . Для роста и развития бактерии молочнокислые нуждаются в соединениях меди, железа, натрия, калия, фосфора, йода, серы, магния и особенно марганца.

Спирты . Бактерии молочнокислые устойчивы к действию повышенных концентраций спирта. Приспособленность к развитию при высоких концентрациях спирта является характерным свойством, широко присущим как гетероферментативным, так и гомоферментативным бактериям. Штаммы бактерий молочнокислых, обладающие высокой энергией кислотообразования, характеризуются и максимальной устойчивостью к спирту. Наиболее быстро в средах с высоким содержанием спирта размножаются молодые культуры. С возрастом скорость размножения их в этих средах закономерно снижается. Чем больше спирта содержит среда, тем медленнее протекает размножение. Угнетающее действие высоких концентраций спирта на бактерии молочнокислые более остро сказывается при высоких температурax. На неполноценных питательных средах, на которых развитие бактерий молочнокислых происходит заторможено, устойчивость к спирту значительно снижается. Длительное культивирование бактерий с дрожжами повышает их устойчивость к спирту. Продолжительность жизни бактерий молочнокислых без пересевов в спиртосодержащих средах (напр., в винах) в 2-4 раза больше, чем в тех же средах без спирта. Это объясняется тем, что в спиртосодержащих средах бактерии медленнее размножаются и накапливают продукты брожения. В осветленных винах в лабораторных условиях при комнатной температуре бактерии молочнокислые выживали более 7 месяцев. В основном спирт подавляет функцию размножения клеток; функция роста подавляется слабее. Спирт у многих видов, особенно при развитии на средах, слабо обеспечивающих их питание, вызывает увеличение размеров клеток в длину; иногда при этом они принимают вид длинных изогнутых нитей.

Форма клеток молочнокислых бактерий: а - кокки - Leuconostoc oenos (х 6000); б - Pediococcus cerevisiae (х 5000); в-палочки - Lactobacillus casei (x 8500); г - Lactobacillus brevis (x 5500)

Величина рН . Бактерии молочнокислые характеризуются порогом рН использования яблочной кислоты и сахаров. Оптимальный предел рН роста для бактерий, выделенных из вин - 4,3-4,8, нижний предел значения рН использования сахаров и яблочной кислоты - 2,9-3,0. В исключительных случаях рН составляет 2,85 и 2,78. Оптимальное значение рН яблочно-молочного брожения 4,2-4,5. При рН выше 4,5 яблочно-молочное брожение замедляется.

Температура . Большинство молочнокислых бактерий растет в относительно узкой зоне температур, которая оказывает влияние на скорость роста, превращений, а также на их потребность в питании. бактерии молочнокислые, выделенные из вин, относятся к мезофильным; они не размножаются при 45°С, и оптимальная температура их роста близка к 25°С-30°С. Температурa ниже 15°С резко тормозит скорость яблочно-молочного брожения. Незначительные дозы растворенного в вине кислорода стимулируют развитие молочнокислых бактерий. Они относятся к группе микроаэрофильных микроорганизмов.

Сернистый ангидрид является ингибитором молочнокислых бактерий. Его токсичность зависит от титруемой кислотности среды. Она значительно усиливается при пониженном значении рН. Связанные формы SO2 ингибируют бактерии молочнокислые, однако этот эффект значительно выше, когда SO2 в свободном состоянии. Больше влияет на размножение бактерий, чем на яблочно-молочное брожение. При концентрации связанного SO2 90 - 120 мг/дм3 яблочно-молочное брожение в винах с рН 3,2-3,3 практически невозможно.


. Молочнокислые стрептококки


К молочнокислым стрептококкам относят мезофильные стрептококки Streptococcus lactis, Str. cremoris и ароматобразующие Str. diacetilactis, Str. acetoinicus, Str. paracitrovorus (Leuconostoc citrovorum), Str. citrovorus (Leuconostoc citrovorum); термофильные Str. thermophilus; энтерококки (молочнокислые стрептококки кишечного происхождения) Str. liquefaciens, Str. faecalis, Str. zymogenes, Str. faecium, Str. durans, Str. bovis.

Это грамположительные кокки (рис. 27), образующие короткие или длинные цепочки. Неподвижны, спор и капсул не образуют. Они относятся к факультативно-анаэробным микроорганизмам (микроаэрофилам). Большинство из них не обладают протеолитической активностью, не образуют каталазу. Вызывают расщепление углеводов гомо- или гетероферментативным путем (такое деление связано с количеством получаемых при молочнокислом брожении побочных продуктов - летучих кислот, эфиров, спирта, диацетила и пр.).

Мезофильные стрептококки . Мезофильные молочнокислые стрептококки кефирного грибка - не однородная группа. Она состоит из активных кислотообразователей (Streptococcus lactis, Streptococcus. cremoris) и ароматообразующпх стрептококков (Leuconostoc citrovorum и Leuconostoc dextranicum).

В настоящее время Streptococcus lactis и Streptococcus cremoris рассматриваются как постоянная и наиболее активная часть микрофлоры кефирного грибка, обеспечивающая быстрое нарастание кислотности закваски в первые часы сквашивания.

Ароматообразующие стрептококки участвуют в формировании специфического вкуса и аромата кефира, а при излишнем развитии могут вызывать газообразование.. lactis (молочнокислый стрептококк). Клетки Str. lactis имеют круглую форму, располагаются в виде овальных, попарно соединенных клеток (диплококков) или коротких цепочек. При росте на поверхности твердых питательных сред образует мелкие, росинчатые колонии; глубинные колонии лодочкообразные или в форме чечевицы. Хорошо растут в присутствии глюкозы или лактозы. На гидролизованном агаре с мелом вокруг колоний образуют зоны просветления (в результате выделения молочной кислоты происходит растворение мела). Благоприятной средой для развития стрептококков является гидролизованное молоко. По росту на кровяном агаре относится к гамма-типу. Оптимальная температура роста 30°С. При этой температуре они свертывают молоко за 10-12 ч. Сгусток ровный, плотный, колющейся консистенции, имеет чистый кисломолочный вкус и аромат. Некоторые расы (разновидности) образуют сгусток тягучей консистенции и поэтому непригодны для выработки большинства кисломолочных продуктов. Str. lactis никогда не сбраживают рамнозу, сахарозу, раффинозу. Часто разлагают казеин. Предельная кислотность, создаваемая в молоке при культивдровании Str. lactis, колеблется в пределах НО - 120° Т (иногда 130° Т), однако встречаются и малоактивные штаммы, предельная кислотность которых достигает в молоке 90-100°Т. Некоторые разновидности Str. lactis продуцируют весьма активный антибиотик низин. Отдельные штаммы молочнокислых стрептококков могут вызывать пороки молочных продуктов: тягучесть, горечь (вследствие пептонизации молока) и др.. cremoris (сливочный стрептококк). Он отличается от Str. lactis тем, что его клетки чаще располагаются в виде цепочек. Форма и величина колоний аналогична форме и величине колоний Str. lactis. Оптимальная температура развития Str. cremoris 20-25°С, максимальная 35-38°С. Через 12 ч в молоке образует прочный сгусток сметанообразной консистенции. Предельная кислотность, образуемая Str. cremoris в молоке, ПО-115°Т. Ферментативные свойства также идентичны. Str. cremoris отличается от Str. lactis по способности сбраживать мальтозу, декстрин, сахарозу. Str. cremoris не растет при 40°С в среде с 4% NaCl при рН 9,2. Str. cremoris не разлагает казеина, иногда и салицина.

молочнокислый брожение бактерия гомоферментативный

Термофильные стрептококки

Эта группа микроорганизмов длительное время игнорировалась исследователями микрофлоры кефирных грибков. Считалось, что, поскольку продукт вырабатывают при сравнительно низких температурах, термофильных микроорганизмов в нем не должно быть. Количество этих микроорганизмов резко возрастает при повышении температуры культивирования. Роль термофильных молочнокислых палочек в кефирной закваске и кефире, по-видимому, достаточно существенна. Эта группа проявляет себя во всех случаях нарушения режимов культивирования грибков - повышения температуры, увеличения выдержки и т.д. Интенсивное развитие ее в закваске приводит к излишнему повышению кислотности и к подавлению мезофильных молочнокислых стрептококков.
К ним относятся Streptococcus thermophilus. Термофильные стрептококки по сравнению с мезофильными лучше развиваются при повышенной температуре. Термофильные стрептококки в отличие от мезофильных сбраживают сахарозу. Поэтому для их выделения из посевного материала к безуглеводной питательной среде добавляют сахарозу. Форма и расположение клеток в мазках идентична морфологии и расположению клеток Str. cremoris. Клетки несколько крупнее, располагаются в виде цепочек разной длины. Но Str. thermophilus имеет и свои особенности (оптимальная температура развития 40-45°С, максимальная 45-50°С). При росте на твердых питательных средах Str. thermophilus образует округлой формы с зернистой структурой поверхностные и глубинные лодочкообраз-ные, иногда с выростом колонии. При оптимальной температуре развития термофильный стрептококк свертывает молоко за 3,5-6 ч, образуя ровный, прочный сгусток сметанообразной консистенции; предельная кислотность 110-120°Т. Некоторые штаммы стрептококка выделяют диацетил. Термофильный стрептококк не сбраживает мальтозы, декстрина и салицина; не разлагает казеина.


Энтерококки - молочнокислые стрептококки кишечного происхождения. К ним относятся Str. liquefaciens (Mammococcus), Str. faecalis, Str. zymogenes, Str. faecium», Str. durans, Str. bovis. Они обитают в кишечнике человека и животных, в навозе, сточных водах. В больших количествах находятся в сыром и в малых в пастеризованном молоке, сыре.

Многие энтерококки образуют короткие цепочки или располагаются попарно. Клетки имеют округлую или яйцевидную форму. Они могут развиваться как при 10, так и при 45°С. Устойчивы к поваренной соли (6,5%), метиленовой сини и желчи (40%), к щелочной реакции среды (рН 9,6), к пенициллину в концентрации 0,3 ед. в 1 мл, к высокой температуре. Выдерживают нагревание при 65°С в течение 30 мин. Ферментируют большинство углеводов.. liquefaciens (Mammococcus). Имеет некоторое сходство со Str. lactis. Оптимальная температура роста 37°С. Маммококк образует не только молочную кислоту (110 - 115°Т), но и выделяет фермент типа сычужного, вследствие этого свертывание молока наступает при низкой кислотности 35-40°Т. Сгусток вначале прочный, ровный, затем под действием сычужного фермента стягивается (выделяется значительное количество сыворотки). Сбраживает сорбит и глицерин. Разлагает казеин и разжижает желатин. Молочные продукты при попадании маммококков приобретают горький вкус в результате накопления большого количества пептонов.. faecalis. Располагается в виде диплококков коротких цепочек. Способен ферментировать маннит, сорбит, редко арабинозу; восстанавливает лакмусовое молоко. На агаре с кровью вызывает гемолиз. Гидролизует белки (особенно в сырах, придавая им специфический запах).. zymogenes. По морфологии и культуральным свойствам сходен с Str. liquefaciens. Он частично разлагает казеин. В отличие от других энтерококков вызывает р-гемолиз эритроцитов, поэтому на кровяном агаре вокруг колоний образуются прозрачные зоны. Гемолиз эритроцитов считают признаком патогенности микроорганизма.. faecium. Его свойства аналогичны свойствам Str. faecalis, сбраживает арабинозу, сахарозу, редко сорбит; частично восстанавливает лакмусовое молоко. Не разлагает казеина.. durans (вариант Str. faecium). Сбраживает лактозу, глюкозу, мальтозу. Редко сбраживает сахарозу, салицин, маннит. Не сбраживает инулина, сорбита, раффинозы.. bovis. По своим свойствам, сходен с термофильным стрептококком. Некоторые штаммы этого стрептококка подвижны. Отличаются от других стрептококков большой чувствительностью к поваренной соли, желчи, щелочной среде и метиленовой сини. Не способен расти при 10°С. Лакмусовое молоко не свертывает, вызывает лишь частично его восстановление. Не сбраживает арабинозу, но часто ферментирует ксилозу.

Гомоферментативное молочнокислое брожение

Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубактерий, которые при сбраживании углеводов превращают в молочную кислоту от 85 до 90% сахара среды. Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родам Streptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода. Бактерии, включенные в два из них (Thermobacterium, Streptobacterium), также осуществляют гомоферментативное молочнокислое брожение. Все бактерии этой группы положительно окрашиваются по Граму, не образуют спор, неподвижны. Группа весьма гетерогенна в отношении нуклеотидного состава ДНК: молярное содержание ГЦ-пар оснований колеблется от 32 до 51%. Значительные колебания по этому признаку характерны и для бактерий, объединенных в роды и даже подроды.

Лактатдегидрогеназа, катализирующая превращение пирувата в лактат, стереоспецифична. У разных видов она содержится в виде определенных оптических изомеров; в зависимости от этого бактерии продуцируют D- или L-форму молочной кислоты. Те из них, которые образуют смесь D- и L-форм, содержат или две формы фермента, различающиеся стереоспецифичностью, или лактатрацемазу.

У этой группы эубактерий молекулярный кислород не включается в энергетический метаболизм, но они способны расти в присутствии О2, т.е. являются аэротолерантными анаэробами. В их клетках в значительном количестве содержатся флавиновые ферменты, с помощью которых происходит восстановление молекулярного кислорода до Н2О2. Из-за неспособности молочнокислых бактерий синтезировать гемовую группу у них отсутствует каталаза - фермент, катализирующий разложение перекиси водорода, поэтому последняя может накапливаться в клетке.

Особенностями конструктивного метаболизма гомоферментативных молочнокислых бактерий являются слабо развитые биосинтетические способности, что выражается в большой зависимости их роста от наличия в питательной среде готовых органических веществ (аминокислоты, витамины группы В, пурины, пиримидины). В качестве источника углерода молочнокислые бактерии используют лактозу (молочный сахар) или мальтозу (растительный сахар, образующийся при гидролизе крахмала). Могут они также использовать некоторые пентозы, сахароспирты и органические кислоты.

Из всех известных непатогенных прокариот молочнокислые бактерии отличаются наибольшей требовательностью к субстрату. Зависимость этих бактерий от наличия готовых органических веществ среды указывает на примитивность в целом их конструктивного метаболизма.

Молочнокислые бактерии распространены там, где они могут обеспечить свои высокие потребности в питательных веществах и где имеются большие количества углеводов, переработка которых дает им необходимую для роста энергию. Их много в молоке и молочных продуктах, на поверхности растений и в местах разложения растительных остатков; обнаружены они в пищеварительном тракте и на слизистых оболочках животных и человека.

Молочнокислым бактериям принадлежит главная роль в осуществлении ряда процессов, используемых с давних времен для получения различных кисломолочных продуктов, в процессах соления и квашения овощей, силосования кормов. Кефир - продукт совместной деятельности молочнокислых бактерий и дрожжей. Известно много национальных кисломолочных продуктов (кумыс, йогурт и др.), для приготовления которых используют кобылье, верблюжье, овечье, козье молоко, а в качестве закваски - естественно возникшие и сохраняемые комплексы молочнокислых бактерий и дрожжей.

Молочнокислые бактерии играют также большую роль в процессе приготовления сыров и сливочного масла. Первый этап производства сыров (створаживание белков молока) осуществляется молочнокислыми бактериями.

Скисание сливок, необходимое для получения сливочного масла, также вызывают бактерии рода Streptococcus. Помимо молочной кислоты некоторые из них образуют ацетоин и диацетил, придающие сливочному маслу характерный запах и вкус. Субстратом служит лимонная кислота, содержание которой в молоке может достигать 1 г/л. Реакции, ведущие к образованию этих веществ, начинаются с расщепления лимонной кислоты:


НООССН2СООНСН2СООН СН3СН2СООН + С2Н5ООССОСН2СООС2Н5


Уксусная кислота выделяется в среду, а щавелевоуксусная кислота (ЩУК) декарбоксилируется, что приводит к образованию пирувата:


С2Н5ООССОСН2СООС2Н5 СН3СОСООН+ СО2 (1)

Дальнейшее метаболизирование пирувата осуществляется по трем различным путям: часть молекул восстанавливается до молочной кислоты; другая часть подвергается декарбоксилированию, приводящему к возникновению разных С2-интермедиатов (ацетил-КоA и «активный» ацетальдегид) и взаимодействию между ними, заканчивающемуся синтезом молекулы диацетила. Восстановление последнего приводит к образованию ацетоина:


СН3-СО-СО-СН3 + НАД*Н2 СН3-СНОН-СО-СН3 + НАД+ (2),


где СН3-СО-СО-СН3 - диацетил, а СН3-СНОН-СО-СН3 - ацетоин.

Эта последовательность реакций не связана с получением клеткой энергии. Смысл ее, возможно, в дополнительном своеобразном решении «акцепторной проблемы», так как, во-первых, образование пирувата в реакции 1 не сопровождается синтезом НАД*Н2, и, во-вторых, синтез ацетоина из диацетила (реакция 2) требует дополнительных молекул НАД*Н2.

Использующие мальтозу молочнокислые бактерии участвуют в квашении овощей. В мелко нарезанные овощи добавляют 2-3% соли и создают условия, исключающие свободный доступ воздуха. Начинается спонтанное молочнокислое брожение. Аналогичный процесс протекает при силосовании кормов. Предназначенная для силосования растительная масса плотно загружается в силосные башни или ямы. Чтобы повысить питательные свойства среды, добавляют мелассу, а в целях создания более благоприятных условий для молочнокислых бактерий растительную массу подкисляют. В этих условиях также протекает спонтанное молочнокислое брожение.


Выводы


Молочнокислые бактерии - группа микроаэрофильных грамположительных микроорганизмов. Как правило, это неподвижные, неспорообразующие кокковидные или палочковидные представители отряда Lactobacillales (например, Lactococcus lactis , Lactococcus cremoris или Lactobacillus acidophilus ).

Геном этих бактерий состоит из кольцевой замкнутой хромосомы, в которой кодируется вся информация, необходимая для жизни, и дополнительных генетических элементов - плазмид и транспозонов. Последние могут обеспечить организм хозяина генетической информацией, которая ему необходима для выживания в определенных условиях. Плазмиды могут кодировать такие свойства, как расщепление углеводов, протеиназная активность, антибиотикорезистентность, резистентность к ультрафиолетовому излучению, сопротивление к фаговой инфекции и другие защитные механизмы против бактериофагов, продукция бактериоцина, а также вязкость и др.

Организация последовательности рибосомных участков, промотор, а также терминационные последовательности некоторых генов лактобактерий подобны другим грамположительным бактериям.

Передача генов совершается с помощью процессов конъюгации, трансформации. Последний сыграл ключевое значение в развитии методологии клонирования генов и молекулярной экспрессии генов.

Изучение генетики этих бактерий имеет как научный, так и коммерческий интерес в связи с их полезностью. Молочнокислые бактерии помимо своей роли в медицинской промышленности, производства пищи и кормов играют важную роль в природе и нормальной жизнедеятельности человека. Поэтому изучают и устанавливают механизмы передачи патогенных свойств, устойчивости к лекарственным препаратам, а также проводятся всевозможные исследования для усовершенствования этих культур.


Список литературы


1) Беленовский Г., Молочнокислые микробы и бактериотерапия (Мед. микробиология, под ред. Л. Тарасевича, т. II, СПБ-Киев, 1913)

) Бурьян НИ., Тюрина Л.В. Микробиология виноделия. - M., 1999.

) Квасников Е.И. Биология молочнокислых бактерий. - Ташкент, 2000

) Квасников Е.И., Нестеренко О.А. Молочнокислые бактерии и пути их использования. - Москва, 1995.

) Миллер А. Санитарная бактериология, М.-Л., 1930

) Шендеров Б.А. // Медицинская микробная экология и функциональное питание. 2001. Т.3.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

1 Общая характеристика молочнокислых бактерий и их особенности, типы брожения

2 Гомоферментативные и гетероферментативные молочнокислые бактерии

3 Получение накопительной культуры молочнокислых бактерий

4 Качественные реакции на молочную кислоту

1 Общая характеристика молочнокислых бактерий

и их особенности, типы брожения

Молочнокислые бактерии относятся к семействам Lactobacillaceae и Streptococcaceae. Распространение в природе молочнокислых бактерий определяется их сложными потребностями в питательных веществах и способом получения энергии. Они почти никогда не обнаруживаются в почве или водоемах. В естественных условиях они встречаются:

    в молоке, молочных продуктах, в местах переработки молока (Lactobacillus bulgaricus , Lactobacillus lactis и другие лактобациллы; Streptococcus lactis );

    на поверхности растений как эпифитная микрофлора и на разлагающихся растительных остатках (Lactobacillus plantarum , Lactobacillus brevis , Le и conostoc mesenteroides );

    в кишечнике и на слизистых оболочках человека и животных как представители нормальной микрофлоры (Lactobacillus acidophilus , Bifidobacterium bifidum , Streptococcus pneumoniae , Streptococcus pyogenes , Streptococcus faecalis , Streptococcus bovis (зеленящий стрептококк) и др.).

В связи с тем, что молочнокислые бактерии используются для приготовления пищевых продуктов и выступают как возбудители болезней человека и животных, они представляют собой группу большого экономического значения.

Морфология клеток. Это морфологически гетерогенная группа бактерий, она включает палочковидные и сферические организмы, длиной от 0,7–1,1 до 3,0–8,0 мкм, расположенных единично или собранных в цепочки. Все молочнокислые бактерии грамположительны, не образуют эндоспор (за исключением Sporolactobaсillus inulinus ), капсул, и в подавляющем большинстве неподвижны. Форма и длина клеток у различных культур одних и тех же видов молочнокислых бактерий часто зависит от состава среды, присутствия кислорода и способа культивирования.

Физиолого-биохимические свойства. Это факультативные анаэробы, использующие в качестве источника энергии углеводы и образующие в качестве основного продукта брожения молочную кислоту (по этому признаку их объединяют в отдельную обширную группу микроорганизмов). У всех молочнокислых бактерий обнаруживаются сложные потребности в факторах роста : витаминах группы В, аминокислотах, пуринах и пиримидинах. Отличительная физиологическая особенность молочнокислых бактерий – их высокая устойчивость к молочной кислоте, что является следствием характерного для них энергетического метаболизма. Способность молочнокислых бактерий образовывать и переносить довольно высокие концентрации молочной кислоты имеет важное селективное значение, так как такое свойство дает им возможность успешно конкурировать с большинством других бактерий в средах, богатых питательными веществами.

Молочнокислые бактерии обычно способны только к брожению.

Молочнокислым брожением называют анаэробное разложение углеводов молочнокислыми бактериями с образованием молочной кислоты и других продуктов. В зависимости от того, какие молочнокислые бактерии вызывают это брожение и какие при этом образуются продукты, оно бывает двух типов – типичное, или гомоферментативное, и нетипичное, или гетероферментативное .

Химизм гомоферментативного молочнокислого брожения прост. Он заключается в гладком расщеплении гексозы на две молекулы молочной кислоты, без образования газообразных продуктов, по следующему суммарному уравнению:

С 6 Н 12 О 6 = 2СН 3 -СНОН-СООН + 18 ккал.

Промежуточными продуктами при этом брожении являются пировиноградная кислота и водород. Присоединяя водород, пировиноградная кислота образует молочную кислоту.

Химизм нетипичного молочнокислого брожения более сложный, так как здесь при сбраживании углеводов, наряду с молочной кислотой, гетероферментативные бактерии образуют ряд других соединений: уксусную и янтарную кислоты, этиловый спирт, углекислоту и водород. Усложнение процесса брожения связано с тем, что эти бактерии содержат в своих клетках фермент карбоксилазу, а у гомоферментативных бактерий он отсутствует. Общий химизм этого процесса может быть представлен схематическим уравнением так:

2С 6 Н 12 О 6 = СН 2 СНОН-СООН + СООН-СН 2 -СН 2 СООН +

СН 3 СООН + СН 3 СН 2 ОН + СО 2 + Н 2 + х ккал.

Молочнокислые бактерии можно разделить на две физиолого-биохимические подгруппы, различающиеся по продуктам, которые образуются из глюкозы в результате брожения (эта классификация была предложена в 1925 г. А.И.Клюйвером, Г.Л.Донкером): гомоферментативные и гетероферментативные.

Ученые давно установили, что все сложно организованные многоклеточные организмы находятся в симбиотической связи с бактериями. Причем бактерии-симбионты не только не оказывают какого-либо вредного воздействия на организм своих многоклеточных хозяев, ну и активно помогают ему выживать.

Местом наибольшего скопления бактерий-симбионтов в организме человека является пищеварительная система.

Если задуматься над тем, сколько именно бактерий постоянно проживает в нашем кишечнике, то цифра это будет казаться невероятной — микрофлору кишечника составляет 100 триллионов бактериальных клеток. Количество микроорганизмов в кишечнике человека существенно превосходит количество его собственных клеток.

.

Впрочем, столь большое число бактерий в кишечном тракте кажется неправдоподобно большим только на первый взгляд. Достаточно вспомнить, что площадь слизистой оболочки кишечника составляет 400 кв.м., что соответствует поверхности двух теннисных кортов. Подумать только, сколько бактерий обитает на настоящих площадках для игры в теннис!

Первые бактерии попадают в организм ребенка с первым в его жизни молоком матери. По мере взросления, меняет свой состав и микрофлора кишечника.

Состав кишечной микрофлоры неоднороден на всем протяжении желудочно-кишечного тракта. В верхних отделах пищеварительной трубки (в желудке), количество микроорганизмов невелико. В основном здесь обитают аэробные стрептококки, лактобациллы и дрожжевые грибки.

Собственно в самом кишечнике проживают главном образом , известная как кишечная палочка, и спороносные бациллы. Но одним из самых важных компонентов микрофлоры здорового кишечника являются молочнокислые бактерии.

Кто такие молочнокислые бактерии?

Молочнокислые бактерии , входящие в состав микрофлоры кишечника, представляют собой многочисленную группу анаэробных грамположительных микроорганизмов.

Сегодня значение термин «анаэробный» не является каким-либо секретом даже для людей, бесконечно далеких от биологии. Большинство прекрасно знает, что анаэробными называются такие живые организмы, для жизни и размножения которых противопоказан кислород.

Деление же бактерий на грамположительные и грамотрицательные часто остается непонятым. У несведущего в микробиологии человека даже может возникнуть впечатление, что грамотрицательные бактерии — это какие-то невероятные организмы с отрицательной массой тела, прибывшие на Землю из самой черной дыры.

На самом деле все намного проще и прозаичнее. Происхождение настоящих терминов связано с тем, что разные виды бактерий окрашиваются в разные цвета при применении популярного в микробиологии метода Грама: грамположительные бактерии демонстрируют синюю окраску, грамотрицательные — красную. Различие в окраске обусловливается различным строением клеточной стенки.

Итак, — это анаэробные микроорганизмы. Кислород им для жизни абсолютно не нужен и даже противопоказан, а вот наличие углеводов совершенно необходимо. Все молочнокислые бактерии сбраживают углеводы с образованием молочной кислоты.

Молочнокислые бактерии разделяют по формам их клеток: шаровидные (Streptococcus lactis ), палочковидные (Lactobacillus ). А так же по субстрату, то есть тому углеводу, который эти бактерии переводят в молочную кислоту: Lactobacillus — глюкоза и лактоза, Betabacterium — глюкоза и мальтоза.

Функции молочнокислых бактерий в организме человека

У данных бактерий есть несколько основных функций.

  1. Вырабатывая молочную и уксусную кислоту, они отвечают за поддержания в кишечнике нормального уровня кислотности.
  2. Умеют нормализовать барьерную функцию в кишечнике, благодаря которой организм человека эффективно противостоит различным болезнетворным агентам. Иными словами, данные симбиотические организмы совершенно необходимы для правильной работы иммунной системы.
  3. Защищают печень, подавляя активность токсических метаболитов.

Кроме молочной и уксусной кислот, молочнокислые бактерии выделяют еще целый ряд полезных для организма человека соединений:

  • синтез летучих соединений (перекиси водорода, сероводорода), токсичных для многих чужеродных микроорганизмов, способствует борьбе с кишечными инфекциями;
  • образование коротких цепочек жирных кислот активизирует перистальтику кишечника;
  • производимые молочнокислыми бактериями витамины и микроэлементы благотворно влияют на весь организм в целом.

Воздействие молочнокислых бактерий на эмоциональное состояние человека

Перечисленные выше функции кишечной микрофлоры были известны ученым уже достаточно давно. В последнее время стало ясно, что у молочнокислых бактерий есть еще одна крайне важная задача — они помогают поддерживать психическое здоровье.

Недавние исследования установили, что

при плохом состоянии кишечника (прежде всего, плачевном состоянии микрофлоры) у человека развивается депрессия, тревога, хронический стресс.

Было выяснено, что для нормального психического состоянии совершенно необходимы опредленные микроорганизмы, которые регулируют настроение человека и другие психические процессы.

В экспериментах с бактерией Bifidobacteriumlongum NCC3001 было показано, что данный микроорганизм является мощным противотревожным агентом. У другой бактерии — Lactobacillus rhamnosus – была показана возможность воздействовать на ГАМК (гамма-аминомасляную кислоту), представляющую собой крайне важный тормозной нейротрасмиттер. Lactobacillus rhamnosus умеет регулировать уровень ГАМК в некоторых отделах мозга, что приводит к уменьшению выброса гормона стресса кортизола и, следовательно, к уменьшению тревожности.

Каким же образом бактерии, проживающие в кишечнике, способны влиять на работу мозга?

Чтобы ответить на этот вопрос, надо просто вспомнить, что человеческий организм имеет не два (спинной и головной), а три мозга.

Помимо центральной нервной системы, в организме есть еще и брюшная нервная система (брюшной мозг), развивающийся из тех же эмбриональных закладок, что и ЦНС.

Брюшной и головной мозг работают в очень тесной связи друг с другом. А потому то, что происходит в кишечнике, имеет самое непосредственное влияние на то, что происходит в голове. Связь головного и брюшного мозга обеспечивает блуждающий нерв, который выходит из черепа и заканчивается в брюшной полости.

Поддерживать в организме нормальное соотношение различных кишечных бактерий достаточно просто: все, что для этого требуется — это полноценное здоровое питание. К сожалению, как раз такого питания большинство из нас в настоящий момент и лишено, причем даже в том случае, если мы едим достаточно много кисломолочных продуктов, фруктов, овощей и нежирного мяса. Дело в том, что многие современные продукты являются не вполне доброкачественными. То есть отравиться ими, конечно, нельзя, но и пользы они особой не приносят. В результате поддержание кишечной микрофлоры в нормальном работоспособном состоянии становится делом весьма непростым.

Помимо неправильного питания, к подавлению микрофлоры кишечника ведут такие факторы, как курение, злоупотребление алкоголем, нервное перенапряжение, а так же прием многих лекарств (антибиотиков, противовоспалительных сфероидных препаратов, слабительных средств).

О том, как оказать помощь братьям нашим меньшим, молочнокислым бактериям, при помощи современных методов натуропатии .

ПОХОЖИЕ МАТЕРИАЛЫ

Похожие материалы

Характеристика пробиотических микроорганизмов и их

Биологическая роль

Термин «probiosis» означает симбиоз, сообщество двух организмов, способствующих жизнедеятельности обоих партнеров. «Probiotic» - организм, участвующий в симбиозе и благоприятствующий жизни.

Первое предположение о связи микробов, заселяющих кишечник, с духовным и физическим здоровьем человека впервые было выдвинуто еще в 1907 году в трудах знаменитого русского ученого И.И. Мечникова.

Впервые термин «пробиотик» как антоним «антибиотика» был предложен D.M.Lilly и P.H.Stilwell в 1965 году для обозначения микробных метаболитов, обладающих способностью стимулировать развитие каких-либо микроорганизмов. Близкое по содержанию толкование термина «пробиотик» было дано в 1971 году A.Sperti для обозначения различных тканевых экстрактов, оказывающих стимулирующее действие на микроорганизмы.

Последующие достижения в области изучения микробной экологии человека позволили внести уточнения в первоначальное определение пробиотиков. Так, в 1974 г. R.B.Parker использовал этот термин для обозначения микробных препаратов, обладающих способностью регулировать микробную экологию кишечника. Согласно его определению, пробиотики – это микроорганизмы или их компоненты, способные поддерживать баланс кишечной микрофлоры.

Позднее R.Filler назвал пробиотиками любые препараты из живых микроорганизмов, дающие при введении в организм хозяина благотворный эффект за счет коррекции кишечной микрофлоры. Лишь ограниченное число кишечных микроорганизмов может считаться пробиотиками, поскольку добавление в пищу именно этих бактерий улучшает пищеварительные функции желудочно-кишечного тракта. Причем, в качестве регуляторов микроэкологии могут выступать как монокультуры, так и смеси микроорганизмов.

Последующие достижения в области микробной экологии позволили R.Filler внести уточнение в его первоначальное определение прибиотиков: это препараты из живых микроорганизмов или стимуляторов роста микробного происхождения, оказывающие благоприятное действие на эндогенную микрофлору. Попытку внести еще большую ясность в толкование этого термина предприняли G.R.Gibson и M.B.Roberfroid, предложившие называть пробиотиками только пищевые добавки микробного происхождения, проявляющие свои позитивные эффекты на организм хозяина через регуляцию кишечной микрофлоры.



В соответствии с ГОСТ Р 52349-2005 «Продукты пищевые. Продукты пищевые функциональные. Термины и определения», пробиотик - функциональный пищевой ингредиент в виде полезных для человека непатогенных и нетоксикогенных живых микроорганизмов, обеспечивающий при систематическом употреблении человеком в пищу непосредственно в виде препаратов или биологически активных добавок к пище, либо в составе пищевых продуктов благоприятное воздействие на организм человека в результате нормализации состава и/или повышения биологической активности нормальной микрофлоры кишечника.

Пробиотические микроорганизмы могут попасть в организм следующими путями:

· с лекарственными препаратами, в состав которых входят штаммы живых микроорганизмов, с четким показанием к применению;

· с биологически активными добавками к пище (комплексными препаратами на основе живых микроорганизмов, изготовленными на фармацевтических предприятиях, которые используют в качестве биологически активной добавки к пище, и, как правило, распространяют через аптечную сеть);

· с пищевыми продуктами, которые ими обогащены или получены биотехнологическим способом с применением пробиотиков в качестве заквасочных культур.

Пробиотики могут содержать как один вид микроорганизмов (монопробиотики), так и ассоциацию штаммов нескольких видов микроорганизмов, от 2 до 30 (ассоциированные пробиотики). В данном случае это симбиотики.

Симбиотики - это комплексные препараты, в которых объединены пробиотические микроорганизмы одной или разных таксономических групп, отобранных по принципу наибольшей выживаемости в неблагоприятных условиях. По своим эффектам эти микроорганизмы дополняют друг друга.

Пробиотики могут назначаться широкому кругу живых организмов (человеку, животным, птицам, рыбам) вне зависимости от видовой принадлежности хозяина, от которого первоначально были выделены штаммы пробиотических бактерий (гетеропробиотики). Однако чаще всего пробиотики назначаются с вышеуказанной целью представителям того вида животных или человеку, из биоматериала которых были выделены соответствующие штаммы (гомопробиотики).

В последние годы в практику начинают внедряться аутопробиотики, действующим началом которых являются штаммы нормальной микрофлоры, взятые от конкретного индивидуума и предназначенные для коррекции его микроэкологии.

Препараты - пробиотики производят в различных лекарственных формах: сухой во флаконах и ампулах, в виде порошков, таблеток и медицинских свечей. Они содержат высокое количество жизнеспособных микроорганизмов в одной дозе, имеют длительные сроки хранения и могут доставляться в самые отдаленные районы нашей страны. Эти средства относятся к медицинским фармакопейным препаратам, что обуславливает их применение в основном в терапевтических целях (см. далее).

Для оздоровления широких слоев населения целесообразнее применять кисломолочные продукты, которые одновременно являются поставщиками питательных веществ и обладают пробиотическим эффектом.

Традиционные кисломолочные продукты, получаемые путём сквашивания молока с использованием различных видов молочнокислых бактерий, применяются людьми в течение тысячелетий. Рассматривая кисломолочные продукты с современных позиций, их несомненно можно отнести к продуктам, оказывающим пробиотическое действие на организм человека.

Великим русским ученым И.И. Мечниковым впервые высказана и научно обоснована мысль о возможности использования молочнокислых бактерий для борьбы с нежелательной микрофлорой желудочно-кишечного тракта человека. И.И. Мечников предложил использовать молочнокислые бактерии, способные приживаться в кишечнике. В литературе имеются многочисленные данные о положительном влиянии кисломолочных продуктов на организм человека.

Исследования, проводимые в направлении получения кисломолочных продуктов с пробиотическими свойствами и по изучению их действия на организм человека, открывают все новые В литературе имеются многочисленные данные о положительном влиянии кисломолочных продуктов на организм человека. Кисломолочные продукты способствуют более высокой усвояемости кальция; усиливают секрецию пищеварительных соков и желчеотделения; усиливают желудочную секрецию и выделение панкреатического сока; повышают выведение мочевины и других продуктов азотистого обмена; подавляют рост нежелательной микрофлоры за счет бактерицидного действия молочной кислоты и антибиотических веществ, продуцируемых некоторыми видами молочнокислых бактерий и бифидобактериями; благоприятно воздействуют на моторику кишечника; способствуют снижению сывороточного холестерина; тонизируют нервную систему. В последние годы установлено, что кисломолочные продукты с пробиотическими свойствами оказывают стимулирующее влияние на иммунитет, механизм которого очевидно включает активацию продукции некоторых регуляторов иммунного ответа, в частности, интерлейкинов и гамма-интерферона в сочетании с усилением местного иммунного ответа энтероцитов, фагоцитоза и пролиферации лимфоцитов. Иммунный эффект связывают с несколькими механизмами - это стимулирующее влияние на иммунный ответ (в частности, на активность микрофагов и клеток- киллеров); снижение под влиянием низкого кишечного pH, обусловленного молочной кислотой, активности 7-альфа- | идроксилазы-фермента микроорганизмов, участвующего в метаболизме желчных кислот, обладающих проканцерогенным действием; снижение активности ферментов микроорганизмов кишечника (глюкуронидазы, нитроредуктазы и азоредукгазы), участвующих в трансформации в кишечнике проканцерогенных соединений в канцерогенные. Имеются сообщения и о способности кисломолочных продуктов с пробиотическими свойствами снижать риск по шикновения злокачественных новообразований, в частности рака | чистой кишки и грудной железы, выводить токсичные вещества из организма.

Кисломолочные продукты способствуют более высокой усвояемости кальция; усиливают секрецию пищеварительных соков и желчеотделения; усиливают желудочную секрецию и выделение панкреатического сока; повышают выведение мочевины и других продуктов азотистого обмена; подавляют рост нежелательной микрофлоры за счет бактерицидного действия молочной кислоты и антибиотических веществ, продуцируемых некоторыми видами молочнокислых бактерий и бифидобактериями; благоприятно воздействуют на моторику кишечника; способствуют снижению сывороточного холестерина; тонизируют нервную систему. В последние годы установлено, что кисломолочные продукты с пробиотическими свойствами оказывают стимулирующее влияние на иммунитет.

Имеются сообщения и о способности кисломолочных продуктов с пробиотическими свойствами снижать риск возникновения злокачественных новообразований, в частности рака толстой кишки и грудной железы, выводить токсичные вещества из организма.


Главное назначение кисломолочных продуктов и препаратов с пробиотическими свойствами − это поддержание хорошего состояния здоровья у людей различных возрастных групп или животных.

Между состоянием здоровья человека, функционированием его иммунной системы и составом микрофлоры его желудочно- кишечного тракта существует тесная взаимосвязь. Нарушение состава микрофлоры в организме (дисбактериозы) может иметь тяжелые последствия. Сильные и длительно действующие неблагоприятные воздействия могут нарушить гомеостаз и привести к болезни или даже смерти организма.

По последним данным Российской АМН распространение различных форм дисбактериоза (нарушение состава полезной микрофлоры) в России достигло масштабов национальной катастрофы, затронув более 90 % населения. Возникновению дисбактериозов способствуют различные внешние факторы и заболевания, в том числе органов пищеварения. Считают, что нормобиоценоз кишечника − это сложнейшая экологическая система, которая является своеобразным органом иммунной системы человека.

Макроорганизм и кишечная микрофлора являются относительно стабильной экологической системой, равновесие которой, с одной стороны определяется физиологическими и иммунологическими особенностями макроорганизма, а с другой − видовым и количественным составом микробных ассоциаций и разнообразием их биохимической активности. При нормальном физиологическом состоянии взаимоотношения макроорганизма и микрофлоры носят симбиотический характер, и флора при этом оказывает существенное влияние на общий иммунитет и естественную резистентность хозяина к инфекциям, принимает активное участие в процессах пищеварения, синтеза различных биологически активных веществ. Со своей стороны макроорганизм оказывает регулирующее действие на состав кишечной микрофлоры посредством кислотности желудочного сока, перистальтики кишечника, желчных солей и других факторов. Стабильность микробных ассоциаций в организме имеет чрезвычайно важное значение для жизнедеятельности хозяина и является одним из показателей его здоровья.

Все это обусловливает широкое применение средств, способствующих восстановлению и поддержанию иммуннобиологического гомеостаза. Необходимо отметить, что организм человека обладает огромными резервами здоровья и часто >ти резервы задействованы не в полной мере и поэтому существует иозможность их мобилизации. Одним из факторов, способствующих активизации собственных сил организма, является симбионтная микрофлора и биологические активные соединения, которые она синтезирует. Систематическое употребление кисломолочных продуктов и препаратов с пробиотическими свойствами, которые оказывают регулирующее действие на организм или те или иные органы и Необходимо отметить, что организм человека обладает огромными резервами здоровья и часто >ти резервы задействованы не в полной мере и поэтому существует иозможность их мобилизации. Одним из факторов, способствующих активизации собственных сил организма, является симбионтная микрофлора и биологические активные соединения, которые она синтезирует.

Необходимо отметить, что организм человека обладает огромными резервами здоровья и часто эти резервы задействованы не в полной мере и поэтому существует возможность их мобилизации. Одним из факторов, способствующих активизации собственных сил организма, является симбионтная микрофлора и биологические активные соединения, которые она синтезирует.

Систематическое употребление кисломолочных продуктов и препаратов с пробиотическими свойствами, которые оказывают регулирующее действие на организм или те или органы и системы, обеспечивает оздоровительный эффект без применения лекарственных средств. Достоинством пробиотиков является их безвредность для организма, полное отсутствие побочных явлений и привыкания к ним при длительном потреблении.

Наиболее часто для изготовления препаратов используют следующие виды живых микроорганизмов:

− род Bifidobacterium: B.bifidum, B.adolescentis, B.breve, B.infantis, B.longum;

− род Lactococcus: Lac. lactis, Lac. сremoris;

− род Lactobaccilus: L.plantarum, L.acidophilus, L.casei, L.delbrueckii; L.reuteri; L.bulgaricus;

− род Propionibacterium: P.acnes; P.freudenreichii ;

− некоторые виды дрожжей: Saccharomyces cerevisiae.

Бифидобактерии

Бифидофлора составляет у детей 98 %, а у взрослых до 40-60 % кишечной микрофлоры. Морфологическибифидобактерии представляют собой грамположительные палочки. Палочки имеют утолщения на одном конце (булавы) или двух концах (гантели). Микроскопическая картина каждого вида бифидобактерий имеет особенности по размеру, форме и расположению клеток.

Физиологическим свойством бифидобактерий является их способность расти и развиваться при температуре 20-40 ºС, рН 5,5-8,0. Оптимальной зоной роста является температура 37-40 ºС и рН 6,0-7,0. При рН ниже 4,5 и выше 8,5 рост микроорганизмов прекращается.

Все виды бифидобактерий при первичном выделении являются строгими анаэробами. В присутствии углекислого газа они могут быть толерантными к кислороду. При лабораторном культивировании эти микроорганизмы приобретают способность развиваться в присутствии некоторого количества кислорода, а в высокопитательных средах - расти в полностью аэробных условиях.

В молоке бифидобактерии развиваются медленно, так как коровье молоко не является естественной средой их обитания. Одной из причин плохого роста бифидобактерий в молоке служит растворенный в нем кислород. У них не обнаружено казеолитической активности, т.е. они могут усваивать казеин только после частичного гидролиза. В результате расщепления казеина образуются полипептиды, гликопептиды, аминосахара, стимулирующие рост бифидобактерий. Другой причиной заторможенного роста бифидобактерий может быть и их низкая фосфатазная активность.

Для нормального роста и развития бифидобактерий большое значение имеет присутствие ростовых веществ. Рост бифидобактерий в коровьем молоке стимулируют экстракты дрожжей, гидролизованное молоко, а также увеличение соотношения белок: лактоза. Сильный стимулирующий эффект роста бифидобактерий получают при использовании гидролизатов казеина.

Растительными стимуляторами роста бифидобактерий в молоке являются обезжиренная соя, экстракт картофеля, тростниковый сахар, кукурузный экстракт, морковный сок. В качестве стимуляторов роста применяют также соли железа, сорбит, микроэлементы в виде сернокислой меди и лактата железа. Кроме того, используют витамины (пантотеновая кислота, биотин, рибофлавин).

Одним из способов активации роста бифидобактерий в молоке является получение мутантов этих микроорганизмов, способных расти без какой-либо защиты от кислорода.

Биологическая роль бифидобактерий заключается в их благоприятном влиянии на организм человека за счет ряда механизмов:

1. Бифидобактерии проявляют высокую антагонистическую активность в отношении патогенных и условно-патогенных микроорганизмов. Антагонистическое действие на патогенные микроорганизмы оказывают органические кислоты, антимикробные вещества, бактериоцины, продуцируемые микроорганизмами. Продуцирование органических кислот (молочной и уксусной в молярном соотношении 2:3) приводит к повышению кислотности и, как следствие, угнетению нежелательной микрофлоры. Среди антимикробных веществ большое значение имеет перекись водорода, которую продуцируют пробиотические микроорганизмы.

2. Бифидобактерии регулируют обменные процессы организма за счет продуцирования витаминов, в частности группы В, биотина (витамин Н), РР (ниацин), которые участвуют в обмене белков, углеводов, синтезе аминокислот.

3. Бифидобактерии способствуют более полному гидролизу белков, как растительных, так и животных. Благодаря этому повышается усвояемость пищи и снижается вероятность развития пищевой непереносимости из-за накопления в толстом кишечнике непереваренных белков.

4.Установлено, что эффективность бифидобактерий обусловлена способностью модулировать различные звенья иммунной системы (активировать выработку IgA (Иммуноглобулин A) в кишечнике, стимулировать фагоцитоз (Фагоцито́з (Фаго − пожирать и цитос − клетка) − процесс, при котором специальные клетки крови и тканей организма (фагоциты ) захватывают и переваривают возбудителей инфекционных заболеваний и отмершие клетки) и образование интерлейкинов (Интерлейкины − биологически активные вещества, секретируемые стволовыми кроветворными клетками и макрофагами; обладают иммунорегуляторными свойствами) , повышать выработку g-интерферона и синтез иммуноглобулина). Установлено, что бифидобактерии обеспечивают поступление незаменимых аминокислот в организм (например, триптофан), способны к антиканцерогенной и антимутагенной активности. Бифидобактерии уменьшают образование нитритов, крезола, индола, аммиака, обладающих канцерогенными свойствами.

Исследования по использованию бифидобактерий для молочных продуктов идут разными путями: выделяют новые штаммы бифидобактерий; получают кислородоустойчивые штаммы бифидобактерий, подбирают и разрабатывают специальные стимуляторы роста бифидобактерий в молоке; вносят фермент β-галактозидазу, расщепляющий лактозу; создают бактериальные концентраты, которыми можно обогащать уже готовые кисломолочные продукты. Большое распространение получило направление по использованию бифидобактерий в сочетании с молочнокислыми бактериями.

Молочнокислые микроорганизмы

Бактерии рода Lactobacillus (стрептобактерии) представляют собой палочки разной длины. Особенностью стрептобактерий является их высокая устойчивость к поваренной соли (6-10 %). Лактобациллы в большинстве способны расти при температуре 1 ºС и хорошо развиваются при 15 ºС. Основными свойствами являются кислото- и ароматобразующая способность, последняя проявляется в способности продуцировать ацетоин. Стрептобактерии обладают выраженной протеолитической активностью, благодаря развитому комплексу протеиназ и пептидаз, в отношении не только молочных, но и мышечных и соединительно-тканных белков.

Биологическая роль молочнокислых микроорганизмов заключается в том, что они обладают выраженной антагонистической активностью, то есть подавляют рост и размножение патогенных микроорганизмов.

Основными продуктами метаболизма гомо- и гетероферментативных лактобактерий являются молочная и уксусная кислоты, перекись водорода и двуокись углерода. Образование молочной и уксусной кислот снижает рН, образуя кислую реакцию в ЖКТ, которая препятствует размножению газообразующей, патогенной микрофлоры. Лактобактерии обеспечивают бактериоцидное и бактериостатическое действие, благодаря выработке бактериоцинов. С их помощью происходит угнетение роста клостридий, листерий, сальмонелл, шигелл, синегнойной палочки, стафилококков, вибрионов.

В организме человека они способствуют активации иммунной системы, участвуют в метаболизме белков, углеводов, липидов, нуклеиновых кислот, солей металлов, желчных кислот, в синтезе витаминов, гормонов, антибиотиков и других веществ. Лактобациллы усиливают физиологическую активность желудочно-кишечного тракта. Активно участвуют в метаболизме пищевых волокон, в разрушении избытка пищеварительных ферментов, а также в нейтрализации токсичных веществ, поступающих из вне или образующихся в результате искаженного метаболизма. Они являются источником различных биологически активных веществ, а именно витаминов группы В, фолиевой, никотиновой кислот, аминокислот, органических кислот.

Бактерии рода Lactococcus не являются типичными представителями микроорганизмов ЖКТ человека, тем не менее пробиотики на их основе толерантны к действию желчи и способны угнетать развитие патогенных и условно-патогенных микроорганизмов.

Пропионовокислые бактерии (ПКБ) – мелкие палочки размером 0,5-0,8х1,0-1,5 мкм часто раздутые с одного конца и зауженные с другого, некоторые клетки кокковидной или V-образной формы; располагаются одиночно, парами или скоплениями. Спор не образуют, растут как в аэробных, так и в анаэробных условиях. Непатогенны, обитают в рубце и кишечнике жвачных животных. По ряду свойств они близки к лактококкам и бифидобактериям. Выращивают ПКБ на различных питательных средах, содержащих кобальт.

ПКБ, развиваясь в молоке, сбраживают молочный сахар до пропионовой и уксусной кислот, а выделенные ими ферменты подвергают распаду белки до образования пептидов и аминокислот. Накопление в продукте летучих жирных кислот, свободных форм азота связывают с образованием специфического аромата, вкуса сыров и кисломолочных продуктов.

Доказано, что жидкие культуры пропионовокислых бактерий способны проявлять антиоксидантный эффект. ПКБ вырабатывают антиокислительные ферменты: каталазу, пероксидазу и супероксиддисмутазу. Из серосодержащих аминокислот пептидов молока ПКБ образуют диметилсульфид, обладающий антимутагенным действием (АНТИМУТАГЕНЫ - химические и физические факторы, понижающие частоту возникновения наследственных изменений организма – мутаций).

Отличительной особенностью ПКБявляется синтез кобаламинов (витамин В 12).

ПКБ стимулируют рост фекальных бифидобактерий и помогают в лечении бактериальных дисбактериозов. ПКБ продуцируют экзополисахариды (ЭПС) – высокомолекулярные углеводы, которые образуют в молоке вязкие сгустки. ЭПС-штаммы обладают повышенной устойчивостью к агрессивной среде ЖКТ благодаря наличию ЭПС-капсулы, которая служит связывающим звеном при их заселении и адгезии в кишечнике. Имеются данные, что количество синтезированных ЭПС зависит от вида культуры и свойств конкретного штамма, а также от условий культивирования.

С продукцией пропионовой и уксусной кислот, диацетила, пропионицинов (антибактериальные вещества) связаны антимикробные свойства ПКБ – подавление роста различных бацилл и микроскопических грибов; благодаря действию этих веществ, ПКБ выступают как натуральные биоконсерванты молочного белка, что позволяет применять данную микрофлору в пищевой промышленности с целью пролонгации сроков хранения продуктов питания.

Пробиотические свойства ПКБ характеризуются тем, что они не перевариваются в желудочно-кишечном тракте людей, устойчивы к действию желчных кислот, выдерживают низкую (рН 2,0 4,5) кислотность желудка, ингибируют активность β-глюкуронидазы, азаредуктазы и нитроредуктазы ферментов, образуемых кишечной микрофлорой и вовлекаемых в образование мутагенов , канцерогенов и промоторов роста опухолей . ПКБ обладают мощными иммуномодулирующими свойства­ми, способны снижать геннотоксическое действие ряда химических соединений и УФ-лучей.